=================== Global Architecture =================== :Authors: Cao Tri DO :Version: 2025-09 .. admonition:: Objectives :class: important This article is intended to provide a comprehensive overview of the global architecture of the solution. .. mermaid:: graph TD A["๐Ÿ“ฆ Data Source (Kaggle / Local)"] -->|๐Ÿ“ค Upload| B["๐Ÿ—„๏ธ Databricks Volume (Raw Data)"] B -->|"๐Ÿงน Cleaning & Preprocessing
(scripts/run_cleanup_data.py, data/cleanup.py)"| C["๐Ÿงช Data Processing (Feature Engineering)"] C -->|โœ‚๏ธ Train / Test Split| D["๐Ÿง  MLflow Experiment
(train_register_model.py)"] D -->|๐Ÿ“Š Track Experiments & Metrics| E["๐Ÿ“ˆ MLflow Tracking Server"] E -->|๐Ÿท๏ธ Model Versioning| F["๐Ÿ“š MLflow Model Registry"] F -->|๐Ÿš€ Deployment & Integration| G["โ˜๏ธ Databricks Workspace (Dev / Acc / Prod)"] G -->|๐Ÿ“Š Monitoring & Reporting| H["๐Ÿ“‰ Dashboard / Visualization (vizualization/)"] subgraph "๐Ÿงฐ Tooling & Environment" I["๐Ÿงฉ Devbox + UV + Taskfile (Reproducibility & Environments)"] J["โš™๏ธ GitHub / GitLab CI-CD (Automated CI/CD)"] K["๐Ÿงผ Pre-commit / Ruff / Commitizen (Code Quality & Standardization)"] end I --> G J --> G K --> G style A fill:#e6f7ff,stroke:#007acc,stroke-width:2px style B fill:#e6f7ff,stroke:#007acc,stroke-width:2px style C fill:#e6f7ff,stroke:#007acc,stroke-width:2px style D fill:#fff2cc,stroke:#f1c232,stroke-width:2px style E fill:#fff2cc,stroke:#f1c232,stroke-width:2px style F fill:#d9ead3,stroke:#6aa84f,stroke-width:2px style G fill:#d9ead3,stroke:#6aa84f,stroke-width:2px style H fill:#d9ead3,stroke:#6aa84f,stroke-width:2px style I fill:#f9cb9c,stroke:#e69138,stroke-width:2px style J fill:#f9cb9c,stroke:#e69138,stroke-width:2px style K fill:#f9cb9c,stroke:#e69138,stroke-width:2px